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Summary 

We consider high-Reynolds-number flow between a rotating inner circular cylinder and a fixed non-circular 
outer cylinder. The dimensionless gap width 8 and the Reynolds number R are assumed to be related by R8 = 
where ~ is a constant. Then the governing equations (to first approximation) are shown to be the classical 
boundary-layer equations, but with unusual boundary conditions. Numerical solutions and analytic approxima- 
tions are found in various cases. 

1. Introduction 

There has been considerable interest recently in laminar, steady, high-Reynolds-number 
flows in slender channels. These channels are characterized by having a streamwise length 
scale of order R, where R is a Reynolds number. Introducing a streamwise co-ordinate x 
we set X =  x/R and assume the stream function q~ = F(X, y) where y is a cross-channel 
co-ordinate. Then to a first approximation when R is large we obtain from the Navier- 
Stokes equations 

Fyyyy = FyFyy X - gxFyyy (1.1) 

omitting terms of order R -2  and R -4.  This form of the stream function is consistent with 
the channel walls having equation y = +H(X), for example, as described in Eagles and 
Smith [1]. The equation is the classical boundary layer equations, but derived with a 
different scaling. 

In the case of channel flows this equation allows a number of interesting solutions, with 
separation and reattachment of the main flow in some cases. See, for example, Bodoia and 
Osterle [2], Paris and Whitaker [3], Blottner [4] and Plotkin [5]. 

In the present paper we consider the flow between a rotating inner cylinder of radius 
R 1 and angular velocity f~ and a noncircular fixed outer cylinder. In a sense to be made 
m o r e  precise later, we assume that the gap-width 8 in units of R I is small and the 
Reynolds number R is high, such that 

~ d  2 
R8 = h - (1.2) 

where X is considered to be O(1) as R--,  o0, 8---, 0 in the first instance, though this 
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assumption is relaxed in Section 6. Under these assumptions and using suitable co- 
ordinates, we find the flow is governed to the first approximation by the slender-channel 
(i.e. boundary-layer) equations. However, the boundary condition on the inner rotating 
cylinder is different from that in channel theory, and the periodicity condition on the 
stream function and pressure introduces novel features. 

There has been much previous work on a related problem, namely the flow between 
eccentric circular cylinders. DiPrima and Stuart [6] give an excellent summary of this 
work, and give a detailed expansion of the steady-state flow for small gap width 8. Their 
expansion is essentially for small 8, with the Taylor number held fixed, which amounts to 
8 ~ 0 with R = O(8-1/2).  DiPrima and Stuart's work was developed with the idea of 
considering the stability of the flows. In later papers (e.g. DiPrima and Stuart [7], Eagles et 
al. [8]), they introduced a relation 81/2= O(e) between the small gap width 8 and 
eccentricity ratio e. We are able to show in Section 4 that our flow, expanded for 8 small 
and R = 0 (8 -1 /2 )  gives the first two terms of their expansion in the special case when our 
outer cylinder is approximately circular. 

In the limit 2~ ~ 0 our method, of course, gives just the equation ~knnn~ = 0 where ~ is a 
cross-stream variable. This equation itself, with the moving inner wall and the variable gap 
gives flows of interest, with reversed flow in some cases and with relatively large pressure 
variations with the azimuthal angle. But these are all describable by earlier methods, at 
least for the eccentric cylinder case. As we increase )~ = R8 these flows are modified by the 
nonlinear terms, the pressure variation becoming larger and the velocity profiles changing. 
But, unlike the case of channel flow, no drastic change in the type of flow is found to 
occur. However, it is possible that the stability properties of our flows may be consider- 
ably different from those examined by DiPrima and Stuart [6] as it is well known that the 
precise shape of the velocity profile is very important in these delicate stability calcula- 
tions. 

However, for the results we have obtained it is rather remarkable how little difference 
the nonlinear terms make to the velocity profiles. In the case of channel and tube flows 
with fixed boundaries the inclusion of the nonlinear terms makes a drastic difference. 
Here, however, all the essential features of the flow seem to be contained in the linear 
approximation, the role of the nonlinear terms being comparatively minor. 

In Section 3 a description is given of some numerical solutions of the problem. 
In Section 4 we consider briefly the solution as X ~ 0. 
In Section 5 some analytic work is presented in the case where the smallest gap width is 

of order eS, with e ~ 0 independently of 8. This enables us to make estimates of the extent 
of reversed flow and of points of attachment and separation, which fit well with the 
numerical results of Section 3. 

In Section 6 some more analytic work for large values of ~ is presented. 

2. Formulation of the problem 

Let r*, 0, z* be cylindrical polar co-ordinates. We consider flow between an inner cylinder 
r* = R 1, rotating with angular velocity fll about its fixed axis, and a fixed outer cylinder 
to be described later (see Fig. 1). 

Let d be the gap width at O = 0, let r = r * / d  and let 

R = ~ l R l d / V  



Fig. 1. Geometry and co-ordinates. 
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be the Reynolds  number.  Let velocities be made dimensionless by f l jR 1, and then if p is 
the appropriate  dimensionless pressure the Navier-Stokes and continuity equations be- 
come, in the steady state 

Ov v Ov u v  1 3p 1 ( 2 3u v )  (2.2) 
u-~-r + r ~ +  r r O0 t--~ V 2 V + r 2  O0 r 2 ' 

1 O (ru) 1 3 v  
r 3 r  + r 3-0 = 0, (2.3) 

where 

a 2 1 O 1 O 2 
V 2 - - -  . (2.4) 

a r  2 + r ~ + r 2 002 

Here u, v are the dimensionless fluid velocities in the r and 0 directions and we have 
assumed the flow is independent  of  z and has no velocity componen t  in the z-direction. 

We set 

x = r - R , / d =  ( r *  - R , ) / d  (2.5) 

and define the dimensionless gap width 

3 = d / R  1 . (2.6) 

We see that 

1 3 
r 1 + 3 x  (2.7) 

so that all the terms in (2.1)-(2.4) involving O / 3 O  have a factor of  order 3 or 3 2 and are 

v ur V2r ran r22 v) o t21, 
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thus relatively small if 8 is small. We suppose that the outer fixed cylinder has equation 

x = F(0)  (2.7a) 

where F(O) is an O(1) function. In terms of r* the equation is 

r* = R, + dF(O), (F(0) = 1). (2.8) 

The aim is to let some of the nonlinear terms appear at the first approximation and this 
is achieved by setting 

R S = ~  (2.9) 

and considering 8 --, 0, R ~ oo with h fixed. This may be formalized by using a stream 
function ~(x,  0) such that 

- 8  0q~ O~ (2.10) 
u =  1 + 8 - - - - - -x  O 0 '  v =0-x-x" 

Consistent with this we may expand 

u= 8Uo(X, O) +82ul(x ,  O) + . . . .  (2.11) 

v = 1)o(X, O) + 8v , ( x ,  O) + . . . .  (2.12) 

p =p0(x ,  0) + 8p , (x ,  O) + . . . .  (2.13) 

Upon substitution into the first momentum equation we find at lowest order in 8 

OP° = 0 
Ox 

and hence 

p = p o ( O ) + S p , ( x , O ) +  . . . .  

Then on using the second momentum equation we find, at lowest order, 

v o Ov o d p o  t- 1 ~ 2I) 0 
u°--~-x + v° a0 = dO h Ox 2 " 

In terms of the stream function defined by (2.10), we have 

ae = aeo(X, o) + 8q,,(x, o) + . . .  

and find 

Uo = - aq, o / a 0 ,  Vo = Oeeo/OX. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 



Hence (2.16) becomes 

_ _ _  Oq'0 a2~k0 dpo 1 ~3~ 0 O~ko O2~k0 + . . . .  + 
00 ~x 2 ~)x ax30 dO h ~x 3 

It is convenient to introduce the cross-stream variable 

n = x/F(O ) 

and we set 

q,0 = G(n ,  o) .  

Then (2.18) becomes 

Gnn,, + XF( O )( GoGnn - GnGon ) + XF'( O )G2~ - )~F3(O) ~-~9-~ ° = O. 

The boundary and periodicity conditions are 

Gn=F(O), (7,o=0 on , = 0 ;  

G n = 0 ,  Go=O on n = l ;  

G andpo are periodic (2~r) in 0. 

T h e  velocities to first order are 

{ F'(O) ) 
= - G ,  , 
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(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

Given an initial profile G(7/, 0) and P(0) = 0 for a fixed K the system (2.25)-(2.26) may 
be marched forward in 0. This will not satisfy the periodicity conditions in general, and K 
must be adjusted together with the profile at 0 = 0 until these are satisfied. This is 
described further in Section 3. 

where P = )~ Po. 

G,, = F(O), G = 0 on 7/= 0; ( a )  

G = K ,  G n = 0  on ~1 = 1 ;  (b)  

G and P are periodic (2~r) in O. (c)  

(2.26) 

1 
V o = - ~ G , , .  (2.24) 

If we fix G at 7/= 1 to be equal to a constant K, then the condition G o = 0 is satisfied. The 
system to be solved for the unknowns G(x, 0), P(O) and K is then 

G,,,,,,+AF(O)(GoGnn - G,,Gon)+)tdFd(@G~ - F 3 - -av(0)--v-a-"dP = 0, (2.25) 



130 

3 .  N u m e r i c a l  s c h e m e  

A finite-difference scheme was used to obtain numerical solutions of the system 
(2.25)-(2.26). The equation (2.25) was integrated in the positive O direction from O = 0 to 
O = 2~r, and an iteration procedure used to ensure that the final solution obeyed the 
periodicity conditions (2.26c). 

New variables, defined by 

OG aS 
- -  T =  - -  ( 3 . 1 )  S = 0.1' 07 

were used to reduce equation (2.25) to first-order form: 

0G 0S 2 d F  3 d P  
- - .  - F - ~ - - - -  

The boundary conditions (2.26a, b) are replaced by 

G = 0, S = F on ~ = 0; (3.3) 

G = K  ( ') ,  S = 0  on ~ = 1 ,  (3.4) 

where K is assumed to have a known value, K ( ' ' ,  and n will be used (below) as the 
iteration index. At O = 0 we assume 'initial '  conditions of the form 

c = GO<"(n) ,  s = = co<,r,  r =  = Go <"' ' ' ,  ? = 0 (3 .5 )  

where G0(')(,/) is a specified profile and the pressure is taken as zero at 8 = 0. 
The system (3.1)-(3.5) was discretised onto a uniform mesh in *1 and O, using central 

differences in each direction. At the current O step there are 3N + 1 unknowns P, (Gi, Si, 
T~) (i = 1 . . . . .  N),  where i = 1 and i = N correspond to , / =  0 and 7/= 1 respectively. These 
satisfy the 3N + 1 equations given by the three discretised forms of (3.1), (3.2) (3 × (n - l) 
equations) and the four boundary conditions (3.3), (3.4). The nonlinearity in (3.2) was 
r e m o v e d b y  using a Newton iteration to convert the system into a linear matrix equation. 
The coefficient matrix contained a band of seven non-zero diagonals and a single column 
corresponding to the pressure term. Gaussian elimination was used to remove this column 
and the adjusted matrix was then solved using a standard routine for banded matrices. 

Solutions for the velocity and pressure are thus obtained by computing forward from 
the initial profile (3.5) to O = 2~r, where 

G = G~"'(rl),  S = S}"( r l ) ,  T =  T ( " ( r / ) ,  P = P, ,  (3.6) 

say. In general these profiles do not coincide with those in (3.5), violating the periodicity 
conditions. An iteration scheme was therefore devised in which the profiles (3.5) and 
(3.6) are equalised after several sweeps of the region 0 ~< 0 ~< 2~r. The scheme must account 
for variations in both the detailed shape of the velocity profile at 0 = 0 and the total 
volume flux, which depends on the (unknown) value of K. It appears that the latter is 
related to the periodicity of the pressure; an overall deficit in pressure from 0 = 0 to 
0 = 2~r (P~ < 0) allows the flow to be too fast and therefore corresponds to a value of K 
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too high, and an overall increase (P1 > 0) corresponds to a value of K too low. After one 
sweep of the layer, the first part  of the iteration procedure is therefore to adjust Ktn) to a 
new value 

K(n+ 1) = K(n) _+ 8K(n), according as PI >< 0. (3.7) 

After a few iterations with 8 K  (n) held fixed, it was generally possible to obtain conver- 
gence by setting 8 K  (") = ½8K (n- 1). An alternative method, also used successfully, was to 
base the new value of K on a linear interpolation of the two previous values of PI. 

The second stage is to adjust the detailed structure of the velocity profile, taking into 
account both the new shape given by (3.6) and the change in overall flux given by (3.7). 
Thus at the n(th) stage of the iteration we set 

sV)/+(I- 
:ro,°+l,] :rl(n' j r0'n']) 

K(n+l) 

K (n) 
(3.8) 

where /~  is a relaxation factor, which in most of the computations was taken as 0.5. Note 
that the formula for So (n+ ~) and the boundary condition, S = F on , / =  0, imply that in 
general there is a slight jump in the value of S on the first 0 step along the inner cylinder 
wall. However, this did not affect convergence and the discontinuity is automatically 
smoothed out as K ("+ 1) __, K(n) and convergence is completed. 

The scheme was generally started from an initial approximation equivalent to the 
Couette-flow solution for constant gap width, 

K (°)= ±2, Go ~°) = ~ / -  ½72, So ~°) = 1 - ~/, To ~°) = - 1. (3.9) 

For a typical run with X = 1, F =  1 + 0.1 sin 0 and step-sizes of 871 = 0.1, 80 = 2~r/25 it 
was found that after 9 iterations IPj I<  10 -2, and G0 (9) and GI 9) were identical to within a 
tolerance of 10-3; at this stage the value of K had also converged towithin  a tolerance of 
less than 10 -3. A further 7 iterations improved the pressure tolerance to IPII < 10 -4 and 
the G o and K tolerances to less than 10 -5. About 3 or 4 Newton iterations were required 
to obtain convergence to within a tolerance of 10 -7 on individual 0 steps. Results were 
obtained for the profile 

F =  1 + a sin 0 (0 ~< a ~< 1) (3.10) 

for various values of X and a, and are summarised in Table 1 and Figs. 2-7. 
Some checks on the accuracy of the computations were performed using a finer mesh 

(67/= 0.02, 80 = 2~r/100) and for )~ = 1, 20 and a = 0.1, 0.5 these exhibited satisfactory 
agreement with the results obtained from the first two terms of a series expansion in 
powers of k given in (4.1) below. For the coarser mesh the maximum percentage error 
appears to be about 3%. It  was found that the forward integration in the 0 direction 
remained stable, even through regions of quite severe reverse flow (see Figs. 5, 7) and the 
results obtained in such cases appear to be consistent with the behaviour suggested by 
asymptotic solutions of the equations described below. The upstream influence associated 
with reverse flow does not invalidate the method of solution since upstream influence can 
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Table 1 
Value of  the flux constant  K. using step-sizes 8,1 = 1/10.  80 = 2~r/25 (theoretical values are given for X = 0. 

a = 0  a n d a = l )  

k 

a 0 1 20 40 100 

0 ½ ! ! ! i 
2 2 2 2 

0.1 0.4925 0.4927 0.4925 0.4921 0.4903 

0.5 ~ 0.3357 0.3352 0.3337 0.3244 

0.8 0.1371 0.1407 - - - 

1 0 0 0 0 0 

occur in the numerical scheme through the iteration procedure. Thus, provided the 
forward integration remains stable, the final solution should not be discounted on these 
grounds. 

The major features of the solution can be observed in Figs. 2-7. For an outer-wall 
variation of the form (3.10) there is a region of compression near 0 = 3~r/2 where the 
pressure falls and the flow attains a maximum forward velocity (Fig. 5). Around 0 = ~r/2 
there is a region of expansion associated with a pressure rise and often separation and 
large regions of reverse flow. The total volume flux, represented by the value of K in Table 
1, appears to be dependent to a large extent on the maximum width restriction imposed by 
the cylinders (which is fixed by the value of a in (3.10)) and is relatively insensitive to the 
value of X. In the next sections we derive various asymptotic solutions of the system 

~ = 100 

Fig. 2. Pressure curves for F =  1 +0.1 sin 0; k = 1, 40, 100. 



I 

0 X = 40 v, I 

t 

0 ~ = 100 v. I 

1 2 3 4 Fig. 3. Velocity profiles for F = 1 +0.1 sin 0 at (left to right) 0/2~r = 5, 5, 0, 5, 5. 
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(2 .25) - (2 .26)  w h i c h  c o n f i r m  this,  a n d  also a l low a m o r e  de t a i l ed  i n t e r p r e t a t i o n  o f  the  

b e h a v i o u r  o f  the n u m e r i c a l  so lu t ions .  

4. L inear  theory  

As  the  p a r a m e t e r  X t ends  to ze ro  the  so lu t ion  o f  the  sys tem (2 .25) - (2 .26)  can  be  e x p a n d e d  

lO 

2r~ 

-5 X = l O 0 ~  

Fig. 4. Pressure curves for F =  1 +0.5 sin 0; )~ = 1, 40, 100. 
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I I 

0 0 ,~ = 1 O 0  v ,  I • ~ = 1 v .  I 

Fig. 5. Velocity profiles for F = 1 + 0.5 sin 0 at (left to right) 0/2*r = 51, 5,2 0, 5,3 5.4 

in the form 

G(,~, O) = C o + XC, + . . . .  

P(O)  = Po + XP, + . . . .  

K =  Ko + ~.K l + . . . .  ( ~ --~ 0) ,  

w h e r e  t h e  l e a d i n g - o r d e r  t e r m s  s a t i s fy  t h e  l i n e a r  e q u a t i o n  

~3Go = F 3 d P o  

0773 dO 

(4.1) 

(4.2) 

- 2 0  

l0 

J 

- 1 0  

Fig. 6. Pressure curve for F =  1 +0.8 sin 0; X = 1. 



v .  I 

1 2 3 4 Fig. 7. Velocity profiles for F =  1 +0.8 sin 0, X = 1 and at (left to right) 0/2~r = g, 5, 0, g, 5. 
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with  b o u n d a r y  condi t ions  

OG o 
Go = 0, 2,1 - F 

~G° - 0 Go = K ° '  a ~/ 

on ~/= 0; 

on ~/= 1. 

(4.3) 

In addi t ion ,  bo th  P0 and  G o must  be periodic.  S i n c e  ~4G0//~'04 = 0 the general  solut ion 
of  (4.2) has the fo rm 

3 

G O = Y~ a,(O)~l". (4.4) 
n = 0  

The  four cond i t ions  (4.3) are sat isf ied b y  tak ing  

a o = 0, a I = F ,  a 2 = 3K o - 2 F ,  a 3 = F -  2 K  o (4.5) 

and,  f rom (5.2), we ob ta in  the pressure  as 

co F -  2 K  o 
P°=Jo d0 (4.6) 

The  per iod ic i ty  of  F ensures that  G o is per iodic ,  but  f rom (4.6) we see that  K o mus t  be  
chosen  to have the value 

Ko = ½ e ZdO//jo2,~F_ 3dO (4.7) 

in o rder  that  Po is per iodic .  I t  follows f rom (4.7) that  the volume flux, K o, satisfies the 
cons t ra in ts  

½ m i n ( r )  < K o < ½ m a x ( F ) ,  (4.8) 

w i t h K  o = ½ i f F = l .  
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For the profile (3.10) we obtain, from (4.7), 

½(1 - - a  2) 
K o -  ( l + ½ a 2 )  (0~<¢x~<l) (4.9) 

and the velocity profile is given by 

( 1 0G__90_1+2 - 2  * /+3  1 - - i f - j , / .  (4.10) V=F O~ 

Separation occurs at the outer wall when 02Go//0"q2(1 , 0 ) =  0. From (4.10) this requires 
K o = ½F, or 

I ( 1-0 2 ) (4.11) ½(1 + a sin 0 ) = 2  (1 + ½a2) " 

Thus, as the variation in gap width, a, increases from zero, separation first occurs on the 
outer wall at the point of maximum width 0 = ~r/2, when 

a = { (  1 ~ - 3 ) = 0 . 3 0 3 .  (4.12) 

As the value of a increases beyond 0.303, the region of reverse flow becomes more 
extensive, with the points of separation and reattachment placed symmetrically about 
0 = ,r/2. Eventually, as a --, 1, the two points meet at O = 3~r/2 and reverse flow occurs 
for all 0 * 3~r/2. This is to be expected, since the two cylinders now touch at O = 3~r/2 
and no fluid can pass between them. Thus K 0 = 0 and, from (4.10), the velocity profile has 
the form 

v = 1 - 4 , /+  3//2, (0 < 7/< 1), (4.13) 

exhibiting reverse flow for ) < ~i < 1, and forward flow for 0 < 7/< ½ driven by the 
rotation of the inner cylinder. 

The solution for G~ in (4.1) can be shown to have the form 

7 
G, = ~_, f l , , (O)f f '  (4.14) 

n z 2  

and detailed work shows that Gz has a factor F'(O). It can also be shown that K~ = 0. 
We can confirm that our theory for small X reproduces the results of DiPrima and 

Stuart [7] who consider slightly eccentric cylinders equivalent to 

O[ = 0({~ 1/2) (4 .15)  

in (3.10). In addition 

R = 0(8  -1/2) (4.16) 
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in order to conform with DiPrima and Stuart's case of fixed Taylor number. Then 

X = R8 = O(81/2) (4.17) 

and the stream function (for the complete Navier-Stokes equations) is 

~b = Go(r)) + 0 ( 8 ) ,  (4.18) 

allowing for the factor of 81/2 (from F'(O)) in G1. From (4.9) 

K 0 = ½ + O(a  2) (4.19) 

and the velocity v in the 0-direction is Go,)/F(O ) + 0 (8 )  which reduces to 

v = (1 - 71) + a sin 0(3)12 - 3,1) + 0 ( 8 ) .  (4.20) 

DiPrima and Stuart's co-ordinates q) and x may be shown to be related to our 0 and 71 by 

x + l  =n+o(a),  

q7 
q~ = 0 - ~ + O(8) ,  (4.21) 

so that (4.20) reduces to 

v = (½ - x )  + a cos 4 ) ( 3 ( x : -  1)) + O(8)  (4.22) 

which, allowing for the different non-dimensionalisation, reduces to DiPrima and Stuart's 
[7] 

V o + eV 1 (4.23) 

for the azimuthal velocity provided e = a, where e is their eccentricity ratio. A geometric 
consideration of the meaning of (3.10) shows that it is the expansion to O(83/2) of the gap 
width when the outer cylinder is a circular cylinder with its centre at distance 48 (in units 
of R1) from the origin. Thus a = e. 

Summarising, if the local gap width dL(O ) is 

dL(O)=R,8 (1  + a  s i n 0 +  . . . ) ,  a = 0 ( 8 1 / 2 ) ,  (4.24) 

then our flow, expanded for fixed Taylor number and thus R - O(8-1/2),  gives the first 
two terms of DiPrima and Stuart's series for the eccentric cylinders case with e = O(81/2). 

When R = 0 (8-1) ,  of course, these two terms are included in our first approximation. 

5. Nearly touching cylinders, ct ~ 1 

The analysis of the situation in which the cylinders nearly touch can be extended to 
general values of the parameter X. Let ~(<< 1) denote the minimum non-dimensional 
width between the two cylinders and suppose that this occurs at 0 = 00. Locally we may 
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then assume that F has the form 

F ( O ) - e + a ( O - 8 o ) 2 +  .. .  (8-->00+) (5.1) 

where a is a known constant. Variations in the solution occur in the region near O 0 where 

0 ' =  e - ' / 2 (0  - 0o) = O(1). (5.2) 

Here 

F = e ( 1  + a0'2) + O(e2), (e ---) 0). (5.3) 

The system (2.25), (2.26) suggests that locally the solution can be expanded in the form 

G = ego (~7, 0') + . . . .  

e = e- 3/2/~ (0 ') + . . . ,  (e ---) 0), (5.4) 

and that the expansion for the flux constant K begins 

r =  g'o + . . . .  ( 5 . 5 )  

consistent with the requirement that K - 0  when the gap between the cylinders is 
completely closed (e = 0). 

At order e, substitution of (5.4), (5.5) into (2.25)-(2.26) yields the system 

OaG° = ( I  + aO'2) 3d/~° 
O)/3 dO' ' 

07) = l + aO '2, Go = O on r/=O, 

Dtffo _ ( 5 . 6 )  
a~7 =0,  (ffo=Ko on */=1,  

similar in form to (4.2), (4.3) above. We now obtain 

G0 = ( 1 -  2h" 0 + aOn)~73 + (3K0- 2-  2a0'2)n: + (1 + a0'2)~7, (5.7) 

and 

/~ = 6 f ° '  ( 1 - 2 K * ° + a O ' 2 ) d O '  
oo (1 + aO '2)3 

( 5 . 8 )  

where K 0 is still to be determined. We can expect that its determination requires the 
application of the periodicity condition (2.26c) but this, in turn, requires a discussion of 
the outer flow where O ~= 8 o. Clearly an analytic solution of the full equations for general 
values of 2, is not possible in this region, although (4.13) gives an approximation to the 
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form that it takes for arbitrary F(O) if X << 1. Fortunately we may find K o without 
reference to the detailed structure of the solution, since it is clear that G = O(1) and 
P = O(1) in the outer flow. Since P = O(e -3/2)  in the region near 0o, it follows that K o 
must be chosen in (5.8) to ensure that fro ~ 0 as 0 '  ~ oo. Thus 

h'o -2 -  3, (5.9) 

- 2 0 '  ( 5 . 1 0 )  
( 1 + aO '2 )2 '  

and 

Go=(aO'2-½)*13-2aO'2*lZ+(l+aO'2)T1, ( - ~  < 0 ' <  oo). ( 5 . 1 1 )  

The solutions (5.10) and (5.1 l) show that near O 0 the pressure first rises to a maximum 
at 0 ' =  - ( 3 a )  -W2, reattachment having occurred in the adverse pressure gradient at 
O' = - a - 1 / 2 .  For - ( 3 a ) - 1 / 2  < O' < ( 3 a ) - i / 2  the pressure gradient is favourable and at 
O' = 0 the flow in the gap is fully forward, with 0G0/a ,  / = 1 - ,/2. Beyond O' = (3a ) -  i/2 
the pressure gradient is again adverse and separation occurs on the outer cylinder wall at 
0 ' =  a -1 /2 .  These features of the solution are consistent with the behaviour of the 
numerical solution shown in Figs. 6 and 7. There, a = 0.8 so that 

e =  1 - a = 0 . 2  (5.12) 

The maximum constriction occurs at O 0 = 37r/2 where F(O), given by (3.10), may be 
written in the form 

F = e ( 1  +aO'2)+eZ(bO'4+cO'2)+O(e3), (e --* 0), (0 '  = O(1)) ,  (5.13) 

with 

½ I 1 (5 14) a =  , b =  2 4 7  C ~  2 "  

The above theory may easily be extended to take into account the correction term of 
O(e 2) in (5.13). We set 

G = e(~ 0 + ezra1 + eS/2G 2 + . . .  

p = + + + . .  
( 0 ' -  O(1)) ,  (5.15) 

and the equations for Pi, Gl are again linear. The periodicity requirement that ff~ ~ 0, 
(0 '  ~ ___ oo), leads to the expansion 

K= 2 e -  2ba-2e2 + O(e 5/2) (5.16) 

for the flux constant. 
The next terms G2, P2 and the O(e 5/2) correction to K involve the parameter  X, and the 

matching conditions f o r / ~  as O' --* _ oo require an evaluation of the pressure in the outer 
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flow. An explicit evaluation can be made in the limit X ---} 0, since then we have 

e ( o )  = 6fOFoZdO (0 <~ O < 0o) 
so 

and 

t'2~r 2 
P ( O ) = - 6 ]  F o d 0  

Ja 

(5.17) 

where it is assumed that P(0) = P(2~r) in order to satisfy the periodicity condition. For the 
profile (3.10) in which a = 1 - e, F 0 is given by 

F o = 1 + sin 0 

so that 

Fo-  a(O-Oo)Z + b(O-Oo)4 + ... ( 0 ~ 0 o  +__), 

where a and b are given by (5.14). It then follows from (5.17) and (5.18) that 

2 12b 
P + + 4, ( 0 ---} 0 o _+ ). (5.20) 

aZ(O - 00) 3 a3(O - 0o) 

The two leading terms match with the solutions in the inner region for fro and ff~ 
respectively and the finite part of the expression (5.20) indicates that 

/~ ~ 4, (0 '  ~ ___ ~ ) .  (5.21) 

This can be expected to fix the O(e 5/2) correction to the value of K in (5.16); for h = 0 the 
correction is actually zero and if2 = 4. The result (5.21) means that in the neighbourhood 
of 00 = 3~r/2 we can expect that, provided the value of X does not have a significant effect, 
the pressure curve given to leading order by (5.10) will be displaced upwards by an 
amount 4 and this is consistent with the behaviour found in the numerical solution for 

= 1, e = 0.2 (Fig. 6). The pressure maxima and minima based on (5.10) are then 

9 
+ e  - 3 / 2 -  - _ 10.3 (5.22) 

and occur at 

O=O°:7~EI/2/[~a)l ~1/2 = __3rr2 -T- 0.37. (5.23) 

These values are in good agreement with Fig. 6, and the value K =  0.1377 obtained from 
(5.16) compares well with the numerical value of 0.1407. 

It should be noted that the leading two terms in (5.15) and (5.16) are valid for any 
finite h and demonstrate how the region of maximum constriction controls the volume 
flux in this case, independent of the outer flow which cannot, in general, be found 

(5.19) 

(00 < 8 2=) (5.18) 
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analytically. Since /s 2 and G2 are proportional to X, it seems likely that the inner 
expansions (5.15), (5.16) will eventually fail when X = O(e- 3/2). 

6.  N e a r l y  c o n s t a n t  gap  w i d t h ,  F = 1 

As the gap width between the cylinders approaches a constant value, the flow must tend to 
the classical Couette solution. This simplification allows some insight into the solution of 
the nonlinear system (2.25), (2.26) for X >> 1. 

We assume that the outer cylinder wall is given by 

F(O) = 1 + af (O)  (6.1) 

where a << 1 and f is an arbitrary periodic function of O. The solutions for G and P may 
then be expanded in powers of a: 

O = O o ( , 7 , o ) + , ~ , , ( n , o ) + , ~ 2 O = ( , ? , e ) +  . . . .  ( . - + 0 ) ,  

P = ~ ( e )  --}- 0//~1 ( e )  --[- 0/2/~2 ( e )  --{- . . . .  

and the flux constant K has the form 

K = Ro + ~R, + ,~2R= + . . . .  (,~ -0 0). 

(a ~0), 

(6.2) 

(6.3) 

Substitution of (6.1)-(6.4) into the full system (2.25), (2.26) leads to a succession of 
problems for Gi, Pi and k i (i = 0, 1 . . . .  ). 

At leading order we obtain 

0Go 02G0 ado 02~o) dFo O3G°-  X - -  (6.5) 
0713 00 0712 071 0 ~ 0  + dO 

with boundary conditions 

Go = O, 0 Go 0--~" = 1 o n  rl = O, 

Go = Ro, 0Go On = 0 on ?/= 1. (6.6) 

These conditions suggest that the solution for d 0 is independent of 0. This implies that t50 
is linear in 0, but since it must also be periodic, we must have 

150 = 0. (6.7) 

From (6.5) and (6.6) we then obtain the Couette 'narrow-gap' solution 

(~o = rl - ½712, Ko  = ½. ( 6 . 8 )  

(6.4) 
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At order a, G 1, Pl and i~ 1 are found to satisfy the equation 

__x( . a 2 a l  } d/5, 
0 /3 + d--ff (6.9) 

and boundary conditions 

G] = 0, O----~ = f  on  '7 = 0, 

(~, =R, a(~, , ~---~ = 0 on */= 1. 

(6.10) 

In order to proceed with the solution we assume that f(O) can, without loss of generality, 
be represented by the Fourier series 

f (O)=fo+ ~ f , , e ' " ° + f  * e - ' ' °  (6.11) 
n z l  

where * denotes complex conjugate. Corresponding periodic forms for G1 and/51 are 

al = go(q) -~ ~ gn(1~) einO -t- g*n(~) e-i"°, (6 .12)  
n=l 

Pl = # o  + ~ #n ei'° +if* e-i"°. (6 .13)  
n ~ l  

The leading coefficients in the series, f0, go and P0 are all real  Substitution into (6.9), 
(6.10) yields 

and 

gff" = 0 ;  go (0 )=0 ,  g~(0)=f0 , g o ( 1 ) = K , ,  g~ (1 )= 0  (6.14) 

g~" =Xin(g.+(1 - ~ ) g ; -  (1 -~)2f~)+inff,; 
g.(O)=O, g ; ( O ) = f . ,  g . ( 1 )=O,  g~(1)=O. 

( n ~  1) (6.15) 

The n = 0 system is easily solved to give 

go = f o ( 7 / -  ½,/2), /~, = ½fo- (6.16) 

For n >/1 it is convenient to write 

g. = h.(,7) - f . ( 1  - ,7) ~ (6.17) 

so that h,, satisfies 

h,~" - in)~( h,, + (1 - */)h~) = inff,,, (6.18) 

h,,(O) =f~, h', (0) = - f~ ,  h,(1)  -- 0, h~(1) = 0. (6.19) 
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Although the full solution can be expressed in terms of Airy functions, the main interest is 
in the form of the solution for large Reynolds numbers, X ---, ~ .  The system (6.18), (6.19) 
can then be solved by boundary-layer techniques, and the domain 0 ~< ,/~< 1 must be 
divided into three regions, a core where , /=  O(1), a boundary layer on the inner cylinder, 
where 

~2 = ~1/2,/= O(1), (6.20) 

and a boundary layer on the outer cylinder, where 

~1 = Xl/3( 1 - -7 / )=O(1) .  

These scalings and (6.18) and (6.19) suggest expansions of the form 

and 

Po = XP0 + X2/3P, + . . .  

h .  = g o ( n )  + ~ , - , / 3 # ,  + . . .  

h .  = ~;0(~: )  + X- ' / 31 ; l (n2 )  + O ( x - ' / 2 )  

h = X - ' / 3 f , , (  n , )  + . . .  

In the core, the equations for/~i, fi~ are 

/~i + ( 1 -  ~)/~ = -f i ,  ( i = 0 ,  1) 

and so 

1~/= 8i(1 - r/) - f i ,  ( i = 0 ,  1) 

core), 

(inner boundary layer), 

(outer boundary layer). 

where 6i, (i = O, 1), are arbitrary constants. 
In the inner boundary layer,/~0 satisfies the equation 

f~ ~"  - i n f , '  o = 0 

and boundary conditions 

/~0(0) = f , ,  /~ (0) = 0, 

and since the solution must not grow exponentially into the core, 

/;0 =L. 

A similar consideration of the equation for /~ gives 

/~1 =0 .  

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 
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Matching with the core solution (6.23) now gives the conditions 

/~0 =f~,/~l = 0 at */= 0, (6.32) 

so that 

a0 =f~ +/30, al =/3,. (6.33) 

Thus, as 7/--* 1, 

/~0 --" -/30, h-, --, -/3,.  (6.34) 

As might be expected, a consistent solution in the boundary layer on the outer wall is only 
possible if the core solution itself obeys the normal velocity condition h,(1) = 0 at leading 
order. It then follows from (6.34) that 

/30=0. (6.35) 

The boundary-layer function/~l is then generated by ~o ---f, in (6.27). 
Substitution of (6.25) into (6.18) yields the equation 

hi" + in( h 1 - *ilh~) = -in~3 I. (6.36) 

From (6.19) the conditions at the cylinder wall are 

/~, (0) = 0, /~(0) = 0 (6.37) 

and, from matching with the core solution/~0, we also require 

/1 , -  f.~h, (~h ~ ~ ) .  (6.38) 

The solution of (6.36)-(6.38) can be obtained by first differentiating (6.36) to give a 
form of Airy's equation. The required solution satisfying (6.37) and (6.38) is 

' , =  3 f . n - ' / 3 e - i ' ~ / 6 f o ~ { £ A i ( z , ) d z , ) d z  (6.39) 

where 

Z = e i ~ / 6 n l / 3 ~ l  I • (6.40) 

The original third-order equation (6.36) then fixes the value of/3, as 

/31 ffi 3f , ,n- ' /3e- '"/ ' lAi '(0)l  , (Ai'(0) = - 0.2582... ), (6.41) 

showing that the pressure distribution between the cylinders is now controlled mainly by 
the dynamics of the boundary-layer flow on the outer cylinder wall. 

We may also note that the system (6.18)-(6.19) has simple solutions in the limit X --, 0. 
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In this case 

6i 
P . =  - ~-L + o ( x ) ,  

g. =f.*/(1 -*/)2 + o ( x )  
(• ---, 0), (n >/1). (6.42) 

The first correction to the flux constant, K, arises from the O(a 2) terms in the basic 
expansions (6.2)-(6.4). These satisfy the equation 

0302 (002 -0202 ~01 0201 Oa I 0201} 
0773 = X / - ~ 0 - + ( 1 - * / ) ~ - ~ - ~ +  0,l 0*/00 00 0*/2 

{ - 020, } _ 2)~f,(1 */)~1 + d/51 d/52 
+xU ~ + (1 - */) ~-~--~ - 3f---~ + d---if' (6.43) 

and boundary conditions 

80: 
02=0 ,  an =0  (,7 = 0); 

02 = k2, a02 0*/ = 0 (*/= 1), 

(6.44) 

with, in addition, the usual periodicity requirements on 02 and/52. 
Some progress can be made by restricting attention to the wall profile (3.10) in which 

case 

i 
f(O) = sin 0, f '  = 2 '  f. = 0 (n ~= 1) (6.45) 

and, from the preceding analysis, 

Gl = gn ei° + g~' e-i° + go, 

/51 ~P l  eiO "~-ff~ e-iO -}-,Po" (6.46) 

The solution for 02 can be written in the form 

G2 = go(*/) -4- ~ gn(*/) ein° + g* e-'"° (6.47) 
n=l 

and consideration of terms independent of 0 in (6.43)-(6.44) yields 

g~" = -) t( i (gng~"- g~g~') + ½(gl + g ~ ) +  ~(1 -*/)(g~ + g l* ' ) -  s(/Ol +/0~), 

(6.48) 
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where 

40(0)=0,  46(0)=0 ,  4o(1)=K2,  46(1)=0.  (6.49) 

This system fixes k 2, and it can be shown from the results for g~ and p~ above, that 

k 2 = - ¼ + O ( h ) ,  (A---, 0), (6.50) 

K2 = O(X'/3),  (X - ,  

It can be confirmed that the first result, which gives 

K=½ --]az+ ... (,~ .--', O, a -.* O) (6.51) 

is consistent with the form of (4.9) for a << 1. 
One of the main interests in the results of the analysis for X >> 1 lies in an estimate of 

the first separation of the flow as a increases from zero. From the above results, and for 
the profile (6.45), the skin friction at the wall is given by 

- ~  x = v = -  1 + 3aXl/3Ai(O) cos(O-3) ,  (1 << ~. << Or-3), 

(Ai(0) -- 0.3550.. .) .  (6.52) 

The corresponding pressure distribution, from (6.41), (6.22), (6.13) and (6.3) is 

P = 3aX2/31mi'(0)l(cos(0 - {~r) + ½), (1 << X << a -3) .  (6.53) 

The result (6.52) shows that the asymptotic theory for ~,---, oo fails when the (small) 
modulation of the outer cylinder wall is sufficiently large, specifically a = O(~-1/3). 
Strictly speaking, as a increases from zero, separation will first occur in this new regime, in 
which it appears that the full boundary-layer equations will govern the flow in a region of 
width O(~ -~/3) near the outer cylinder. Apart from conditions of periodicity, the 
situation is likely to be similar to that of the perturbed-Poiseuille-flow studies by Smith 
[9], with the pressure, of O(~1/3), determined as part of the boundary-layer solution. It is 
hoped to consider this regime in a future paper. 

The present theory may still be used to obtain an approximate estimate of the first 
occurrence of separation when ~ >> 1. According to (6.52) it occurs at 0 = ~r/3 when 

a = 1h-' /3[Ai(0 ). (6.54) 

Here the gap between the cylinders is widening and the pressure is rising from its 
minimum value 

Pmin = -- {ah2/31Ai'(0)l at 0 = {~r, (6.55) 

to its maximum value 

Pmax = 9ah2/3lAi'(0)l at 8 = ],r. (6.56) 
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This behaviour compares well with the trend of the numerical solution for )~ = 100, 
a = 0.1, shown in Fig. 2; the maximum and minimum values of  the pressure given by 
(6.55) and (6.56) are 2.48 and - 0 . 8 3  in this case. 
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